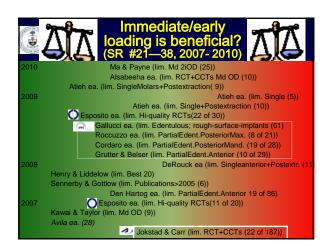
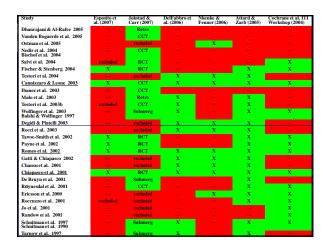
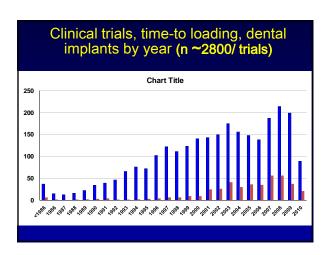

Designing clinical trials to study early/immediate loading of dental implants


Asbjørn Jokstad, DDS, PhD Professor and Head, Prosthodontics Faculty of Dentistry, University of Toronto




Lunch & Learning – designing trials on implant loading

- ➤ Background & experience
- ➤ Usage and future plans
- ➤ Any planned clinical study?

General findings RCT/CCT trials

The first trials

- > 1968 1975 (Brånemark et al. 1977: Experience from a 10-year period)
- > TPS implants (Ledermann 1978); Tübinger Al₂O₃ (Schulte 1978)

The largest RCT trials

- > 62 patients and 325 implants (Testori et al. 2008)
- > 266 patients with 383 implants (Ganeles, Zollner, et al. 2008)

The longest follow up RCT trial

> 5 years (Roccuzzo et al., 2008 & Fischer et al. 2008)

The longest observation period

8-18 years, average 12, retrospective study on ITI implants placed in the edentulous mandible (Lambrecht & Hodel 2007)

Reason(s) for conducting a trial?

- ► PICOS question
 - ➤ What is the relative merit / benefit?
 - ➤ What is the predictability?

	Relative merit of intervention	Predictability of intervention			
1.	High quality RCT with narrow confidence Interval	Cohort study with ≥ 80% follow-up			
2.	Cohort study or low quality RCT - e.g. <80% follow-up	Retrospective cohort study or follow-up of untreated control patients in an RCT			
3.	Case-Control Study				
4.	Case-series (and poor quality cohort and case-control studies)	Case-series (and poor quality cohort studies)			
5.	Expert opinion without explicit critical appraisal, or based on physiology, or bench research	Expert opinion without explicit critical appraisal, or based on physiology, or bench research			

<u> </u>

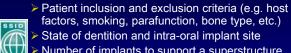
Reason(s) for conducting a trial?

- ►PICOS question
 - ➤ What is the relative merit / benefit ?
 - >What is the predictability?

P atient

<u>L</u> ntervention <u>C</u> omparative intervention O utcome

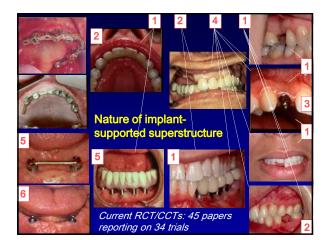
S tudy design



Developing the Study protocol

- **►** Introduction
- ►M&M
 - ➤ Sample size
 - ▶REB
 - ➤ Funding?
 - > Recruiting clinicians / participants
 - ➤Where? How?

Clinical variables with potential influence on treatment outcomes



- factors, smoking, parafunction, bone type, etc.)
- > State of dentition and intra-oral implant site
- State of dentition and intra-oral implant site
 Number of implants to support a superstructure
 - ➤ Nature of implant-supported superstructure
 - Clinical procedures (e.g. stage of healing following extraction, site preparation, torque,
 - Implant morphology (smooth, microrough, rough)
 - > Treatment outcome criteria
 - Observation period

Patient inclusion and exclusion criteria

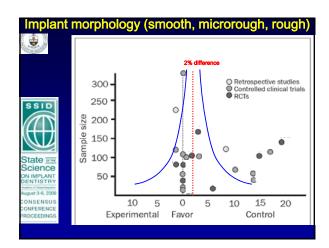
- General
- > Attitude / habits
- Medical
- Local
 - **≻**Anatomy
 - ➤ Pathology, current or past
- **≻**Operational

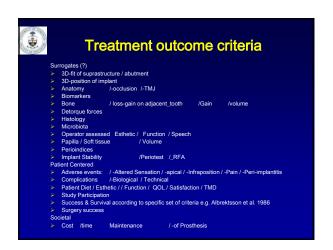
Clinical procedures (e.g. stage of healing following extraction, site preparation, torque, etc.)

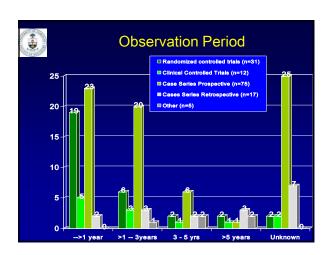
Postextraction Instantly - hours -- 2 / 3 / 7 /10 days- 2 weeks - 6-8 weeks -

Healing screw/cap -- Temporary / Permanent abutment / meso-structure?

Impression & Fixture – abutment / mesostructure?


Temporary, type and material – reline – occlusion?


Final reconstruction – teeth in a day Teeth in an hour


No graft / graft / graft + membrane & Biomaterials(s)

Primary stability: 15 NCm --- 25 ---- > 50 NCm ? / 60 ? 70 ISQ

Primary stability not achieved - plan?

